US 20210110001A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2021/0110001 A1

MITCHELL et al.

43) Pub. Date: Apr. 15, 2021

(54)

(71)

(72)

@
(22)

(1)

MACHINE LEARNING FOR ANIMATRONIC
DEVELOPMENT AND OPTIMIZATION

Applicant: Disney Enterprises, Inc., Burbank, CA
(US)

Inventors: Kenneth J. MITCHELL, Glendale,
CA (US); Matthew W. MCCRORY,
Chicago, IL (US); Jeremy Oliveira
STOLARZ, La Crescenta, CA (US);
Joel D. CASTELLON, Berlin (DE);
Moritz N. BACHER, Zurich (CH);
Alfredo M. AYALA, JR., West Covina,
CA (US)

Appl. No.: 16/601,919

Filed: Oct. 15, 2019

Publication Classification

Int. CL.
GO6F 17/50
GO6T 13/40

(2006.01)
(2006.01)

200 —_

GOG6N 3/08 (2006.01)

GOG6N 20/00 (2006.01)

GO6T 17/20 (2006.01)
(52) US.CL

CPC ... GOGF 17/5086 (2013.01); GOGF 17/5009
(2013.01); GO6T 17/20 (2013.01); GO6N 3/08
(2013.01); GO6N 20/00 (2019.01); GO6T

13/40 (2013.01)

(57) ABSTRACT

Techniques for animatronic design are provided. A plurality
of simulated meshes is generated using a physics simulation
model, where the plurality of simulated meshes corresponds
to a plurality of actuator configurations for an animatronic
mechanical design. A machine learning model is trained
based on the plurality of simulated meshes and the plurality
of actuator configurations. A plurality of predicted meshes is
generated for the animatronic mechanical design, using the
machine learning model, based on a second plurality of
actuator configurations. Virtual animation of the animatronic
mechanical design is facilitated based on the plurality of
predicted meshes.

205
[Creative concept }f

Design

2154 i cluation
N Detefgé g}}%{g} tuation

R
220 4 \J

J4 Ssiect actualor(s}

"
A

] Select material{s)

2251

®

A

LA

230
Simulation -
Simulate artificial | A 238
gkin S

<+

2
Deep Learing e 59
— 260

Dasign Validation A

L

Production

Patent Application Publication Apr. 15,2021 Sheet 1 of 9 US 2021/0110001 A1

110A

FIG. 1

Patent Application Publication Apr. 15,2021 Sheet 2 of 9 US 2021/0110001 A1
200 \
- 205
[Creative concept }/
210 ~ ~~
™~ Design
N Detergid?nﬁgftuai.on P 230
7 Sirmulation
590 4 \J é > Simulate artficial | = 239
"\ Select actuator(s) il
3
2251 \J
"\ Select material(s)
\ —~250
/\ A Static Possfs) |-
- 255
Deep Leaming e
< &
| DesignValidation |/ 260
<L 3
265
Production e

FIG. 2

Patent Application Publication

Apr. 15,2021 Sheet 3 of 9 US 2021/0110001 A1
Design Evaluation Device 305
Processor 310
Memory 318
Design Application 330
Simutation Component 336
Deep Leaming Component 348
Validation Component 350
Storage 320
Mechanical Design 355
Simulated Mesh{es) 360
Predicted Mesh(es) 365
Network interface 325

FIG. 3

Patent Application Publication

450

455

405

Apr. 15,2021 Sheet 4 of 9

410

FIG. 4

US 2021/0110001 A1

415

Patent Application Publication

500
N

Apr. 15,2021 Sheet 5 of 9

¥

US 2021/0110001 A1

Receive animatronic
mechanical design

~ 505
/

-

¥

Generate simulated
meshes using simulation
model

¥

Train deep learning
model(s)

¥

Generate predicied
meshies}

¥

Validate animatronic
mechanical design
based on predicted

mesh{es)

/”" 525
A

— 530
S

Design

approved
?

Facilitate construction of
physical animatronic
based on design

~ 535
S

FIG. 5

Patent Application Publication Apr. 15,2021 Sheet 6 of 9 US 2021/0110001 A1

800
™

:)) 805
Receive animatronic /
mechanical design

¥

810
Determine sample pose /
configuration(s)

¥
/‘ 615
Select a pose -

¥

¥ f 620

Begin simulation stage =

Stage already

simulated Apply shared stage
?

No

835
Generate simulation /
stage

/Simuiaﬁon No

complete -

Yes Additional
pose{s)
?

e

No

Return simulated
mesh(es)

FIG. 6

Patent Application Publication

700
RN

Apr. 15,2021 Sheet 7 of 9

US 2021/0110001 A1

Select a simulated mesh

705
7

¥

710
7

Determine corresponding actuator

configuration{s}

¥

Normalize configuration(s)

715
Ve

¥

Refine deep learning model(s) based on
simulated mesh and normalized

configuration{s}

720
Ve

Yes

Additional

simulated
mesh(es/)//
? o

éNo

Return deep learming model(s)

730
7

FIG. 7

Patent Application Publication Apr. 15,2021 Sheet 8 of 9

800
N

US 2021/0110001 A1

Receive desired configuration(s)

5
st

¥

¥

Select a configuration

810
7

¥

-815

Normalize selected configuration

¥

-820

Generate X position for each vertex

¥

-82
185

Generate Y position for each vertex

¥

-830

Generale Z position for each vertex

835
Additional

configuation(s)
3

<

Provide predicted mesh{es}

840
f

FIG. 8

Patent Application Publication Apr. 15,2021 Sheet 9 of 9 US 2021/0110001 A1

D0
N

j’ 905

Generale a first plurality of simulated
meshes using a physics simulation
model, wherein the first plurality of

simidated meshes correspond o 3 first
plurality of actuator configurations for an
animatronic mechanical design

i -810

Train a machine learning mode! based on
the first plurality of simulated meshes and
the first plurality of actuator configurations

¥ 915
J

Generate, using the machine learning
model, a plurality of predicted meshes
for the animatronic mechanical design,
based on a second plurality of actuator
configurations

i
i e 920

Facilitate animation of the animatronic
mechanical design based on the plurality
of predicted meshes

FIG. 9

US 2021/0110001 A1

MACHINE LEARNING FOR ANIMATRONIC
DEVELOPMENT AND OPTIMIZATION

BACKGROUND

[0001] The present disclosure generally relates to machine
learning, and more specifically, to aiding animatronic design
using machine learning.

[0002] Developing an animatronic is an expensive and
time-consuming process. lypically, existing techniques
require construction of electronic and mechanical machinery
(e.g., actuators and a mechanical assembly, such as a rigid
frame or skeleton), along with construction and attachment
of an artificial skin to complete the animatronic. Further,
animation software must be prepared to drive the motion of
the animatronic. This takes significant time and effort, and it
is only after all of these efforts are completed that designers
can view how the animatronic looks in motion and in various
poses. Redesign or modification of the animatronic at this
stage is difficult and expensive, often requiring restarting the
entire process. Existing attempts to facilitate the develop-
ment process using computer-aided design are typically
either inadequately accurate or excessively compute-inten-
sive, rendering them unsuitable for practical use.

SUMMARY

[0003] According to one embodiment of the present dis-
closure, a method is provided. The method includes gener-
ating a first plurality of simulated meshes using a physics
simulation model, wherein the first plurality of simulated
meshes corresponds to a first plurality of actuator configu-
rations for an animatronic mechanical design. The method
further includes training a machine learning model based on
the first plurality of simulated meshes and the first plurality
of actuator configurations. Additionally, the method includes
generating, using the machine learning model, a plurality of
predicted meshes for the animatronic mechanical design,
based on a second plurality of actuator configurations.
Further, the method includes facilitating virtual animation of
the animatronic mechanical design based on the plurality of
predicted meshes.

[0004] According to a second embodiment of the present
disclosure, a non-transitory computer-readable medium is
provided. The non-transitory computer-readable medium
contains computer program code that, when executed by
operation of one or more computer processors, performs an
operation. The operation includes generating a first plurality
of simulated meshes using a physics simulation model,
wherein the first plurality of simulated meshes corresponds
to a first plurality of actuator configurations for an anima-
tronic mechanical design. The operation further includes
training a machine learning model based on the first plurality
of simulated meshes and the first plurality of actuator
configurations. Additionally, the operation includes gener-
ating, using the machine learning model, a plurality of
predicted meshes for the animatronic mechanical design,
based on a second plurality of actuator configurations.
Further, the operation includes facilitating virtual animation
of the animatronic mechanical design based on the plurality
of predicted meshes.

[0005] According to a third embodiment of the present
disclosure, a system is provided. The system includes one or
more computer processors, and a memory containing a
program which when executed by the one or more computer

Apr. 15,2021

processors performs an operation. The operation includes
generating a first plurality of simulated meshes using a
physics simulation model, wherein the first plurality of
simulated meshes corresponds to a first plurality of actuator
configurations for an animatronic mechanical design. The
operation further includes training a machine learning model
based on the first plurality of simulated meshes and the first
plurality of actuator configurations. Additionally, the opera-
tion includes generating, using the machine learning model,
a plurality of predicted meshes for the animatronic mechani-
cal design, based on a second plurality of actuator configu-
rations. Further, the operation includes facilitating virtual
animation of the animatronic mechanical design based on
the plurality of predicted meshes.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] So that the manner in which the above recited
aspects are attained and can be understood in detail, a more
particular description of embodiments described herein,
briefly summarized above, may be had by reference to the
appended drawings.

[0007] It is to be noted, however, that the appended
drawings illustrate typical embodiments and are therefore
not to be considered limiting; other equally effective
embodiments are contemplated.

[0008] FIG. 1 illustrates an animatronic face, according to
one embodiment of the present disclosure.

[0009] FIG. 2 depicts a workflow for using deep learning
to facilitate animatronic development, according to one
embodiment disclosed herein.

[0010] FIG. 3 is a block diagram illustrating a design
evaluation device, according to one embodiment disclosed
herein.

[0011] FIG. 4 depicts a set of predicted meshes generated
using machine learning, according to one embodiment dis-
closed herein.

[0012] FIG. 5 is a flow diagram illustrating a method for
using machine learning to facilitate development of anima-
tronics, according to one embodiment disclosed herein.
[0013] FIG. 6 is a flow diagram illustrating a method for
generating simulated meshes to train machine learning mod-
els, according to one embodiment disclosed herein.

[0014] FIG. 7 is a flow diagram illustrating a method for
training deep learning models to predict animatronic
meshes, according to one embodiment disclosed herein.
[0015] FIG. 8 is a flow diagram illustrating a method for
generating predicted meshes for an animatronic design,
according to one embodiment disclosed herein.

[0016] FIG. 9 is a flow diagram illustrating a method of
using machine learning to aid animatronic design, according
to one embodiment disclosed herein.

DETAILED DESCRIPTION

[0017] In order to develop mechanical animatronic
designs, experienced developers construct a mechanical
assembly, determine the size(s), shape(s), and location(s) of
actuation points where the actuators connect to or contact
with the artificial skin, and further design the artificial skin
itself (e.g., the surface shape, as well as the thickness and
elasticity in various areas of the skin). This intensive process
is time-consuming and expensive. Further, in traditional
workflows, the designer cannot truly observe and validate
the design until it is actually built, because it is difficult or

US 2021/0110001 A1

impossible to predict how the skin will stretch, compress,
and fold as the actuators move. Embodiments of present
disclosure provide techniques to use machine learning in
order to predict how an animatronic mechanical design will
look and respond once fully constructed.

[0018] In some embodiments, a physics simulation model
is used to simulate the animatronic mechanical design. In an
embodiment, the simulation model receives a digital repre-
sentation of the mechanical design, including the location,
type, and orientation of each actuator, the attributes of the
artificial skin, the actuation points, and any other attributes
needed to simulate the design. In use, the physics model
receives actuator configurations specifying the state of each
actuator, and generates a digital mesh that simulates the
expected shape of the artificial skin. In one embodiment, the
actuator configurations specify one or more values for each
actuator. In embodiments, this can include rotational coor-
dinates and/or translational coordinates. In some embodi-
ments, the actuator configurations are given as a set of six
values for each actuator (e.g., an X, Y, and Z translational
coordinate, as well as rotational coordinates in each dimen-
sion). In an embodiment, the simulated mesh is generated as
a volumetric mesh consisting of finite elements, whose outer
boundary faces (e.g., elements without a neighbor) consti-
tute the outer surface of the simulated skin.

[0019] Although accurate, this simulation model is also
extremely compute-intensive, reducing the practicality of
using the model in real-time. That is, the physics simulation
consumes significant computing resources and time to gen-
erate a single simulated mesh, which makes it difficult and
expensive to view the animatronic design in motion (which
requires generation of many simulated meshes at a large
number of actuator configurations). In one embodiment, a
set of simulated meshes are generated using the physics
simulation model, and these meshes are used to train one or
more machine learning model(s). These learned models can
then be used to generate predicted meshes more rapidly,
which allows users to validate and refine animatronic
designs in a quicker and more cost-effective manner.
[0020] In one embodiment, a learned computational
approach is used to provide interactive design of high
fidelity animatronic facial performances. To construct the
animatronic, a quasi-static simulation framework is used to
solve for the state of the mechanical assembly and the state
of the attached artificial (e.g., silicone) skin, given a con-
figuration of rotational and/or linear actuators. In some
embodiments, to enable interactive pose design, a shallow
fully-connected neural network is trained using input motor
activations to solve the simulated mesh vertices directly.
Most traditional machine learning focuses on classification
problems, and typical heuristics used require probability
estimates over a discrete set of classes. These existing
systems are inadequate for generating predicted meshes, as
placing mesh vertices in three-dimensional space is a com-
plex problem that goes far beyond simple classification.
Embodiments of the present disclosure provide techniques
to train machine learning models for this task.

[0021] To deform artificial skin into a given pose, the skin
is attached at actuation points to a mechanism driven by a set
of motors/actuators. In some embodiments of the present
disclosure, the animatronic is a facial construction, which
requires high accuracy in order to immerse viewers.
Embodiments of the present disclosure provide machine
learning models that accurately predict skin deformations

Apr. 15,2021

based on a given configuration of the actuators. In one
embodiment, the input for the learned models includes a
configuration of each actuator. In embodiments, each actua-
tor configuration is a state vector of one or more values for
each degree of freedom the actuator has. For example, a
linear actuator or a simple rotational actuator may each have
one degree of freedom (in and out, or a degree of rotation,
respectively). In some embodiments, each actuator configu-
ration consists of rotational and/or translational components.
That is, in one embodiment, a six-dimensional vector is used
to represent the rotational and translational configuration of
each actuator (e.g., an X, Y, and Z rotation or orientation, as
well as an X, Y, and Z translation).

[0022] In one embodiment, to formulate mechanical joint
constraints that restrict the relative motion between pairs of
components, frames are defined that remain constant in local
component coordinates. That is, coordinate frames are intro-
duced that move with the assembly components. Global
coordinates can then be transformed by applying rigid
transformations encoded in the state vector, formulating a
set of constraints between centers and pairs of axes. For
example, for a hinge connecting two components, the two
frame centers coincide in global coordinates, and the trans-
formed z-axis of the frame on the first component remains
orthogonal to the transformed y and z axes of the frame on
the second component (assuming the hinge axis is along the
7 axis).

[0023] FIG. 1 illustrates an animatronic face, according to
one embodiment of the present disclosure. In the illustrated
embodiment, the facial profile comprises an Artificial Skin
105, controlled by a set of Actuators 110A-N. Although
linear actuators are illustrated, in embodiments, any collec-
tion of actuators can be used, including rotational, linear, and
combinational actuators. Additionally, in embodiments,
motors or Actuators 110A-N may be utilized to drive a
mechanical assembly that in turn, actuates the Artificial Skin
105. As illustrated by the Configuration 100A, when the
Actuators 110A-N have a first configuration, the Artificial
Skin 105 has a neutral expression with the mouth held
closed. As further illustrated in FIG. 1, when the Actuators
110A-N take a different Configuration 1008, the Artificial
Skin 105 deforms to open the mouth and form a different
expression.

[0024] In embodiments, any number and type of Actuator
110 may be utilized to attach to the Artificial Skin 105 at
defined actuation points, which are selected by a designer. In
some embodiments, the selection of Actuator 110 type,
power, and placement is aided by a design system that is
used to predict the power and placement needed to achieve
a given deformation, and to predict the resulting deforma-
tion from a given configuration of Actuators 110. In some
embodiments, the artificial skin is a silicone (or other
similarly elastic) material that is rigidly attached to the
animatronic design in some places, and attached to movable
actuators in others. In one embodiment, the thickness and/or
elasticity of the Artificial Skin 105 is controlled to provide
predictable and preferred deformations. Although an anima-
tronic face is illustrated, embodiments of the present dis-
closure can be utilized to simulate the elastic deformations
of any animatronic mechanical design.

[0025] FIG. 2 depicts a Workflow 200 for using deep
learning to facilitate animatronic development, according to
one embodiment disclosed herein. In the illustrated Work-
flow 200, the process begins with a Creative Concept 205.

US 2021/0110001 A1

That is, a designer or developer conceives of an animatronic
design (e.g., a character) that they wish to create. The
Workflow 200 then enters a stage for Design 210, where the
physical animatronic design is developed and refined. As
illustrated, the Design 210 includes, among other things,
determining actuation points on the artificial skin (block
215), selecting actuator types and locations to utilize (block
220), and selecting the material(s) to be used for the artificial
skin and/or skeleton (block 225). In some embodiments, the
Design 210 is performed with the assistance of computer-
aided design (CAD) software. As illustrated, each of these
selections are interrelated, and decisions made with respect
to one aspect of the design can affect the decisions made
with respect to others.

[0026] As illustrated, once an initial design is developed,
the Workflow 200 moves to a phase for Simulation 230. In
an embodiment, the Simulation 230 generally includes using
one or more physics simulation models to simulate artificial
skin deformations based on the animatronic mechanical
design, and to refine the design based on these simulations.
As illustrated, the Simulation 230 includes simulating the
artificial skin deformations (block 235).

[0027] In the illustrated embodiment, the Simulation 230
and Design 210 often occur as an iterative and back-and-
forth process, until the designer is satisfied with the anima-
tronic mechanical design. As discussed above, in one
embodiment, the Simulation 230 enables the generation of a
set of simulated meshes representing the artificial skin under
various actuator configuration states. However, the Simula-
tion 230 is quite compute-intensive, and requires significant
time and expense. In some embodiments, the Simulation 230
is thus impractical for real-time interactive manipulation of
the mesh.

[0028] In the illustrated Workflow 200, the physics simu-
lation model is used to generate a data set of Static Pose(s)
250. In one embodiment, each Static Pose 250 is simulated
based on a corresponding set of actuator configurations for
the actuator(s) that make up the animatronic design. In one
embodiment, the Static Pose(s) 250 include one or more
poses representing the endpoints of each actuator. That is, in
an embodiment, a number of Static Poses 250 are generated
using independent maximum and minimum actuator con-
figurations representing the extremes of each actuator. For
example, if an actuator can rotate between zero and one-
hundred degrees, in one embodiment, the Static Poses 250
include at least one pose with the actuator at zero degrees,
and at least one pose with the actuator at one-hundred
degrees.

[0029] In some embodiments, a set of random Static Poses
250 are generated as intermediate poses between these
extremes. In an embodiment, this includes using a random or
pseudo-random algorithm to generate actuator configura-
tions for each actuator, and generating a simulated mesh
using the generated configurations. For example, if the
animatronic design includes ten actuators, each with six
degrees of freedom, the system may generate a value for
each degree of freedom, for each actuator, and uses these
values to generate a Static Pose 250. The process can then
be repeated until a sufficient number of Static Poses 250
have been generated to train the learning models.

[0030] As illustrated, once the Static Poses 250 have been
simulated, the Workflow 200 progresses to Deep Learning
255, where the Static Poses 250 are used to train one or more
machine learning models. In one embodiment, three

Apr. 15,2021

machine learning models are used to predict each channel
(e.g., X, Y, and Z) independently. That is, in an embodiment,
a first machine learning model is used to predict an “X”
value for each vertex in the predicted mesh, a second model
predicts the “Y” value for each vertex, and a third model
predicts the “Z” value for each vertex. The output of these
models can then be combined to create a predicted mesh,
where each vertex in the mesh has a position in three-
dimensional space given by the coordinates (X, v, z). In some
embodiments, Deep Learning 255 includes one or more
neural networks. In other embodiments, the Deep Learning
255 may include use of polynomial regression, or other
purely analytical approaches.

[0031] In one embodiment, training the Deep Learning
255 comprises providing a set of actuator configurations as
input to the model(s), and applying the corresponding simu-
lated mesh as the target output. In an embodiment, the
models are configured to optimize surface-to-surface loss
such that the generated predicted mesh closely aligns with
the simulated mesh. In one embodiment, optimizing surface-
to-surface loss includes optimizing vertex-to-vertex loss. In
some embodiments, each model has a number of input
neurons equal to the number of actuators in the animatronic
design, such that the configuration of a given actuator serves
as input for a corresponding neuron in the input layer. In one
embodiment, each input neuron can correspond to either (i)
a single actuator, (ii) a combination of actuators (e.g., a
combinatorial function of two or more actuators, such as a
linear combination), or (iii) an actuation point on the arti-
ficial skin (which may be controlled by one or more actua-
tors). Further, in one embodiment, the output layer includes
a neuron to correspond to each vertex in the predicted mesh.
That is, in such an embodiment, each neuron in the output
layer of the model generates a coordinate value (e.g., a
location along the X, Y, or Z axis) for a given vertex.

[0032] Insome embodiments, the Deep Learning 255 uses
a fully-connected generator model. In an embodiment, this
is a shallow model using just three fully connected layers: an
input layer, a single hyperbolic-tangent activated hidden
layer, and a linear-activated output layer. In some embodi-
ments, the input values are normalized to a range from zero
to one before being input. For example, the input for an
actuator that ranges from forty-five to one-hundred degrees
can be normalized to between zero and one, as can the input
for an actuator that ranges from zero to two-hundred
degrees. In embodiments, the size of the hidden layer is
dependent in part on the particular dataset being used. In one
embodiment, the hidden layer includes between one and two
times the number of input neurons (e.g., between one and
two times the number of actuators). Experimentation has
shown that, for an animatronic human face with thirteen
actuators, a hidden layer with thirteen neurons performs
well. For a fantasy character design that included eleven
actuators, twenty-two neurons in the hidden layer yielded
the best results.

[0033] In some embodiments, a Generative Adversarial
Network (GAN) is used for the Deep Learning 255. In such
an embodiment, two separate neural networks (or sets of
neural networks) are trained: a first network (or trio of
networks) acts as a generator to generate predicted meshes,
and a second network (or trio of networks) acts as a
discriminator to attempt to differentiate between the gener-
ated meshes and the underlying ground truth (the simulated
mesh). In one embodiment, the generator phase utilizes a

US 2021/0110001 A1

similar architecture to the fully-connected generator model
discussed above, while the discriminator utilizes five con-
volution layers that process polygons hierarchically. In such
an embodiment, the first layer of the discriminator passes a
filter through the X, y, and z coordinates of each triangle in
the mesh, and subsequent layers pass filters through groups
of these polygons.

[0034] In one embodiment, the fully-connected generator
model can be trained more rapidly and simply, allowing it to
produce relatively higher fidelity results after fewer training
iterations, as compared to the GAN approach. The GAN
model, in contrast, can take richer vertex information into
account (e.g., mesh topology), which may allow it to provide
more robust predictions, especially for poses that are not
common in the training set. Embodiments of the present
disclosure can utilize either (or both) models, depending on
the particular implementation.

[0035] After training the Deep Learning 255, the trained
model(s) can be used to generate predicted meshes for the
animatronic design, given a pose (e.g., a set of actuator
configurations). Using these models, therefore, designers
can provide actuator configurations (or a series of actuator
configurations) to generate the corresponding predicted
mesh(es). As depicted in the illustrated workflow 200, this
enables Design validation 260. In one embodiment, a user
provides a sequence of configurations, and the models
output a series of meshes, which can be combined to create
a predicted mesh that moves over time, representing the
animatronic design in motion (e.g., as the actuators move).
In some embodiments, this is output as a video or animation
file.

[0036] In one embodiment, the user(s) perform Design
Validation 260 based on whether the predicted mesh(es)
align with their goals and intentions for the animatronic
design (e.g., whether the predicted facial deformations fit
with their vision for the character). In some embodiments,
some or all of the Design Validation 260 is performed
automatically. For example, artistic input (e.g., a target
animation) could be compared to the predicted meshes, in
order to validate the design. In one embodiment, the system
applies predefined criteria to checks each predictive mesh
for potential concerns. For example, in an embodiment, if
the distance between two or more predicted vertices is less
than a predefined threshold, the system may note that the
artificial skin is likely to be too-densely squeezed, resulting
in deterioration of the skin, and/or undesired deformations.
Similarly, if the distance between two or more vertices
exceeds a threshold, the system may determine that the skin
will be stretched too tightly/too thinly, potentially leading to
similar deterioration or undesired deformation.

[0037] As illustrated, if the design is successfully vali-
dated, the workflow 200 proceeds to block 265, where
production occurs, and the animatronic mechanical design
can be physical constructed. In an embodiment, this includes
sending the design parameters to one or more other systems
or users to assemble the actuator frame, create the artificial
skin, and the like. In contrast, if the user is not satisfied with
the predictive motions and deformations (or if the automated
system identifies potential concerns), the workflow 200
returns to the Design 210 stage. This iterative process can be
repeated until the predicted deformations are satisfactory.
[0038] FIG. 3 is a block diagram illustrating a Design
Evaluation Device 305, according to one embodiment dis-
closed herein. Although illustrated as a discrete computing

Apr. 15,2021

device, in embodiments, the operations of the Design Evalu-
ation Device 305 may be implemented as a virtual machine,
as software (e.g., executing in a cloud environment), and the
like. As illustrated, the Design Evaluation Device 305
includes a Processor 310, a Memory 315, Storage 320, and
a Network Interface 325. In the illustrated embodiment,
Processor 310 retrieves and executes programming instruc-
tions stored in Memory 315 as well as stores and retrieves
application data residing in Storage 320. Processor 310 is
representative of a single CPU, multiple CPUs, a single CPU
having multiple processing cores, and the like. In some
embodiments, the Processor 310 includes one or more
graphics processing units (GPUs). Memory 315 is generally
included to be representative of a random access memory.
Storage 320 may be a disk drive or flash-based storage
device, and may include fixed and/or removable storage
devices, such as fixed disk drives, removable memory cards,
or optical storage, network attached storage (NAS), or
storage area network (SAN). Via the Network Interface 325,
the Design Evaluation Device 305 can be communicatively
coupled with one or more other devices and storage reposi-
tories.

[0039] In the illustrated embodiment, the Storage 320
includes one or more Mechanical Designs 355, one or more
Simulated Meshes 360, and one or more Predicted Meshes
365. In an embodiment, each Mechanical Design 355 speci-
fies parameters and arrangements that represent an anima-
tronic design. For example, in such an embodiment, the
Mechanical Design 355 indicates the number, type, power,
location, orientation, and any other relevant parameters for
each actuator and/or actuation point in the design. In an
embodiment, the Mechanical Design 355 indicates both the
configuration of actuators, as well as the location, size,
orientation, and the like of each actuation point they drive.
In some embodiments, the Mechanical Design 355 further
specifies the details of the underlying mechanical assembly
(e.g., its shape and material, where the skin and/or actuators
attach, and the like). Further, in one embodiment, the
Mechanical Design 355 defines the artificial skin (e.g., the
material, density, thickness, actuation/connection points, a
mesh representing the surface(s) of the skin, and the like). In
an embodiment, the Mechanical Design 355 generally
includes the details necessary to simulate and/or construct
the animatronic.

[0040] In the illustrated embodiment, the Simulated
Meshes 360 are three-dimensional surface meshes made of
elements (e.g., tetrahedral elements). In one embodiment,
during simulation, the simulator derives the deformed nodes
of these elements and generates volumetric meshes, in order
to output surface meshes of the deformed skin (e.g., to
output Simulated Meshes 360). In one embodiment, the
Simulated Meshes 360 are generated by using a physics
simulation model that uses physics to simulate the defor-
mations that will occur in an artificial skin given a set of
configurations for actuators that are coupled to the skin. In
embodiments, this simulation process is highly accurate, but
is compute-intensive and time-consuming. In some embodi-
ments, the actuator configurations used to create the Simu-
lated Meshes 360 are selected in a way that ensures adequate
coverage of all potential poses the animatronic can make (or
that the designer expects to use).

[0041] In embodiments, these Simulated Meshes 360 are
used to train one or more deep learning models (e.g.,
convolutional neural networks). For example, for each of the

US 2021/0110001 A1

Simulated Meshes 360, the corresponding actuator param-
eters can be applied as input to the learning model(s), while
the Simulated Mesh 360 (e.g., the X, y, and z coordinate of
each surface vertex) is used as the target output. In this way,
the models can be trained and refined to predict mesh
deformations given sets of actuator parameters. In the illus-
trated embodiment, the Predicted Meshes 365 are three-
dimensional surface meshes of the skin, each comprising a
set of vertices connected by one or more edges and/or
polygons. In some embodiments, rather than being trained to
generate surface meshes, the simulation is trained on volu-
metric meshes (e.g., generated by the simulation compo-
nents) and similarly generates volumetric meshes. In an
embodiment, the Predicted Meshes 365 are generated by
providing actuator configurations to the trained learning
model(s). Although depicted as residing in Storage 320, in
embodiments, the Mechanical Design(s) 355, Simulated
Mesh(es) 360, and Predicted Mesh(es) 365 may reside in
any suitable location.

[0042] As illustrated, the Memory 315 includes a Design
Application 330 which is used to evaluate and validate
animatronic designs. Although depicted as software residing
in Memory 315, in embodiments, the operations of the
Design Application 330 can be implemented using hard-
ware, software, or a combination of hardware and software.
In the illustrated embodiment, the Design Application 330
includes a Simulation Component 335, a Deep Learning
Component 345, and a Validation Component 350. Although
depicted as discrete components for conceptual clarity, in
embodiments, the functionality and operations of the Simu-
lation Component 335, Deep Learning Component 345, and
Validation Component 350 may be combined or distributed
across any number of components.

[0043] In an embodiment, the Simulation Component 335
receives a Mechanical Design 355 and uses a physics
simulation to generate a corresponding Simulated Mesh 360
for one or more sets of actuator configurations. In some
embodiments, the Simulation Component 335 receives an
indication of the desired configurations. In another embodi-
ment, the Simulation Component 335 generates one or more
sets of actuator values to be used to generate the Simulated
Meshes 360. In embodiments, the actuator configurations
are selected to provide a diverse set of poses to train the deep
learning model(s). In some embodiments, values are chosen
to cover the extremes of each actuator, as well as a random
sample of values between these extremes.

[0044] In one embodiment, generating the Simulated
Meshes 360 involves iteratively proceeding through stages
of generation for each set of actuator values, until a full mesh
is generated. In some embodiments, one or more of these
stages are potentially re-usable between poses. For example,
in such an embodiment, the first stage for a first set of
configuration parameters may generate intermediate results
that apply to a second set of configuration values as well. In
such an embodiment, the Simulation Component 335 can
preserve these intermediate stages in order to enable more
efficient and faster generation of the Simulated Meshes 360.
For example, in one embodiment, the Simulation Compo-
nent 335 can periodically check whether the output of a
previously stage can be re-used for the current generation
stage. If so, this output is applied, rather than re-computing
the simulation stage.

[0045] In the illustrated embodiment, the Deep Learning
Component 345 receives the Simulated Meshes 360 and

Apr. 15,2021

trains one or more machine learning models using them. In
an embodiment, the Deep Learning Component 345 gener-
ates and trains a fully-connected generator convolutional
neural network to generate the Predicted Meshes 365. In one
embodiment, the neural network uses an input layer equal in
size to the number of actuators in the Mechanical Design
355. For example, if the animatronic design utilizes thirty
actuators, in one embodiment, the Deep Learning Compo-
nent 345 utilizes thirty neurons in the input layer of the
network. Further, in one embodiment, the neural network
utilizes an output layer equal in size to the number of
vertices to be included in the Predicted Meshes 365. For
example, if the output meshes include five hundred vertices,
the output layer of the generator network will similarly
include five hundred vertices.

[0046] In some embodiments, the Deep Learning Compo-
nent 345 generates each channel (e.g., the x, y, and z
coordinates) independently. In such an embodiment, the
Deep Learning Component 345 can train three neural net-
works: a first that generates a value for the “x” coordinate of
each vertex, a second that generates a value for the “y”
coordinate of each vertex, and a third that generates a value
for the “z” coordinate of each vertex. In this way, the
position in three-dimensional space of each vertex in the
Predicted Mesh 365 is determined by the output from a
corresponding neuron in each of the trained networks. In
embodiments, the number of hidden layers, as well as the
number of neurons included in each hidden layer, can be
tweaked based on the Mechanical Design 355 and Simulated
Meshes 360. In one embodiment, a single hidden layer with
a size between one and two times the number of actuators
yields accurate results.

[0047] In an embodiment, to train the generator network,
the Deep Learning Component 345 iteratively refines the
neural network based on each Simulated Mesh 360. To do
s0, the Deep Learning Component 345 applies the mesh as
target output for the model. That is, the Deep Learning
Component 345 applies the X, y, and/or z coordinate of each
respective vertex in the Simulated Mesh 360 as the target
output for the corresponding neuron in the output layer of
the machine learning model. The actuator configuration that
was used to generate this Simulated mesh 360 is similarly
applied as input to the model. In an embodiment, the Deep
Learning Component 345 then modifies one or more weights
in the network, based on a loss formula that optimizes
vertex-to-vertex (or surface-to-surface) loss. That is, the
Deep Learning Component 345 can determine a distance
between each predicted vertex and the corresponding simu-
lated vertex. This distance can then be back-propagated
through the network to refine the model.

[0048] In some embodiments, in addition to a generator
network, the Deep Learning Component 345 also utilizes a
discriminator network to form a GAN model. In such an
embodiment, the discriminator is trained to attempt to clas-
sify input meshes as either a Simulated Mesh 360 (e.g., one
that was generated using the physics simulation model) or a
Predicted Mesh 365 (e.g., one that was generated using the
deep learning model(s)). If the discriminator cannot tell the
difference (e.g., it cannot reliably classify input meshes), the
Deep Learning Component 345 determines that the genera-
tor model is sufficiently trained, and is ready for use in
design validation.

[0049] In the illustrated embodiment, the Validation Com-
ponent 350 is used to validate the models and/or the

US 2021/0110001 A1

Mechanical Design 355. In one embodiment, the Validation
Component 350 provides a graphical user interface (GUI)
that enables users can specify one or more actuator configu-
rations, and view the corresponding Predicted Mesh(es) 365.
In one embodiment, the user can specify a start pose and an
end pose (e.g., six-dimension vectors corresponding to a
start and end pose for the animatronic design), and the
Validation Component 350 generates a set of intermediate
actuator configurations. The Validation Component 350 can
then generate a set of Predicted Meshes 365 using these
configurations, in order to depict the animatronic design in
motion. In one embodiment, the Validation Component 350
provides the three-dimensional mesh itself, allowing users to
navigate around it and view it from different angles. In
another embodiment, the Validation Component 350 can
render one or more images from one or more perspectives
around the mesh, in order to provide a video file depicting
the deformation of the artificial skin as the animatronic
moves.

[0050] In an embodiment, the Deep Learning Component
345 and/or Validation Component 350 are used to improve
the research and development process for animatronic con-
structions (e.g., to expedite the process of designing and
constructing the animatronic). In some embodiments, the
Deep Learning Component 345 and/or Validation Compo-
nent 350 are further used to provide animators with a
realistic and accurate rig to animate with using digital artist
tools. This in turn allows animators to animate using these
offline tools in a manner that is very similar to animating on
the actual animatronic itself. For example, users may use
buttons, sliders, and the like to move actuators in the rig,
while the Deep Learning Component 345 generates pre-
dicted meshes for the input values. This allows users to view
and animate the planned animatronic in a highly-realistic
environment. In some embodiments, the user can further use
these input values as the actuator values that are used to
animate the physical animatronic.

[0051] FIG. 4 depicts a set of Predicted Meshes 365
generated using machine learning, according to one embodi-
ment disclosed herein. In the illustrated embodiment, each
mesh included in the Column 405 corresponds to a “ground
truth” Simulated Mesh 360. That is, the meshes included in
the Column 405 were generated using by the Simulation
Component 335 using a physic simulation model. Further,
the meshes depicted in Column 410 were generated using a
fully-connected neural network generator model, while the
meshes depicted in Column 415 were generated using a
GAN architecture.

[0052] In the illustrated embodiment, the meshes in a
given row were generated using the same actuator configu-
rations. That is, for a given row, the mesh depicted in the
Column 405 was simulated by the Simulation Component
335 using a set of actuator values as input, the mesh depicted
in the Column 410 was generated using a trained fully-
connected neural network suing the same set of actuator
values, and the mesh depicted in the Column 415 was
generated with a trained GAN architecture using the same
set of actuator values. FIG. 4 thus illustrates how the deep
learning models can generate high-fidelity Predicted Meshes
365, which can be used to evaluate the animatronic design.
[0053] FIG. 5 is a flow diagram illustrating a method 500
for using machine learning to facilitate development of
animatronics, according to one embodiment disclosed
herein. In the illustrated embodiment, the method 500 begins

Apr. 15,2021

at block 505, where a Design Application 330 receives an
animatronic mechanical design (e.g., from a user). As dis-
cussed above, in an embodiment, the animatronic mechani-
cal design specifies the details necessary to simulate the
design, such as the actuator types and placements, the skin
material and actuation points, and the like. In some embodi-
ments, the animatronic mechanical design further specifies
the endpoints of each actuator. For example, if the actuator
has its movement restricted (e.g., by other components of the
design, or to ensure the movement is within the desired
goals), the animatronic mechanical design specifies the
extremes of the travel each actuator is allowed.

[0054] The method 500 then continues to block 510,
where the Design Application 330 generates one or more
simulated meshes for the animatronic mechanical design
using a simulation model. In an embodiment, the simulation
model is a physics model that takes into account the elas-
ticity/density of the skin, the power and placement of the
actuators, and the like, in order to determine the deforma-
tions that the artificial skin will form when a given set of
actuator parameters are applied to the actual animatronic
once constructed. The method 500 then continues to block
515, where the Design Application 330 uses these simulated
meshes to train one or more deep learning models, as
discussed above. At block 520, the Design Application 330
can use these trained models to generate one or more
predicted meshes for the animatronic design, based on a set
of actuator configurations.

[0055] In one embodiment, the set of configurations used
to generate the predictive meshes are provided by a user. In
some embodiments, the user can specify two or more poses
(e.g., sets of configurations), and the Design Application 330
generates intermediate poses (sets of actuator configura-
tions) between the specified poses, in order to predict the
deformation of the skin as the actuators move between
poses, in addition to while stopped at each pose. These
predicted meshes can be used to validate the underlying
design. The method 500 then continues to block 525.

[0056] Atblock 525, the Design Application 330 validates
the animatronic mechanical design using the generated
predictive meshes. In one embodiment, as discussed above,
the Design Application 330 compares one or more of the
predicted meshes against predefined criteria (e.g., vertex
spacing criteria) to determine whether the predicted pose
would cause artificial skin stretching or compression beyond
a predefined threshold. These extreme deformations may
cause undesirable texture or appearance of the artificial skin,
which may cause the user to redesign the animatronic
mechanical design. In some embodiments, validation
includes outputting for display one or more of the predicted
meshes, such that a user can view the expected deformations
in order to determine whether the animatronic design is
ready for production.

[0057] The method 500 then continues to block 530,
where the Design Application 330 determines whether the
animatronic mechanical design has been approved (e.g., by
auser). If not, the method 500 returns to block 505 where the
Design Application 330 awaits a revised design. If the
animatronic design has been approved, however, the method
500 continues to block 535, where the Design Application
330 facilitates the construction of the physical animatronic
device based on the design. In one embodiment, this
includes transmitting some or all of the design to other

US 2021/0110001 A1

entities and/or systems for review, approval, and/or con-
struction of some or all of the design.

[0058] FIG. 6 is a flow diagram illustrating a method 600
for generating simulated meshes to train machine learning
models, according to one embodiment disclosed herein. The
method 600 provides additional detail for the simulation
process described above, and begins at block 605, where the
Design Application 330 receives an animatronic mechanical
design, as discussed above. At block 610, the Design Appli-
cation 330 determines one or more sample poses (e.g.,
actuator configurations) to be used to generate simulated
meshes. In one embodiment, one or more sample poses are
specified by the user. In some embodiments, one or more
sample poses are generated by the Design Application 330.
[0059] In some embodiment, the Design Application 330
generates or receives actuator configurations representing
the outermost deflections each actuator is capable of achiev-
ing. In one embodiment, the Design Application 330 then
creates one or more intermediate poses between these
extremes. That is, the Design Application 330 generates a set
of random or pseudo-random values in the range between
the allowable extremes, for each actuator. In some embodi-
ments, the user can further specify one or more actuator
configurations representing poses that are particularly
extreme or difficult, to ensure the trained models can learn
these difficult positions.

[0060] In one embodiment, the Design Application 330
uses adaptive learning to determine sample poses, in order
to accelerate the process of training the neural network(s) to
generate predicted deformations. Note that as the number of
actuators in a design increases, the set of possible configu-
rations grows exponentially. If improper poses are selected,
the network may be “over-fit” during training, rendering it
unsatisfactory for use. However, the computing resources
required to generate a sufficient number of randomly-se-
lected simulated meshes may be prohibitively expensive in
some embodiments. Some embodiments of the present dis-
closure therefore provide data-driven active learning to
select actuator-mesh pairs that make the training process
converge faster and more robustly.

[0061] In some embodiments of the present disclosure,
Learning Active Learning (LAL) is applied to simulate runs
of an active learning method as a subroutine, in order to
produce data that helps select incoming observations. This
allows new training data to be generated on demand, adap-
tively, during the training of the model(s). In an embodi-
ment, this simulation data is model state (plus actuator
values) mapped to a reduction in generalization error, which
is computed in the test set. In one embodiment, a regressor
model is trained to learn batch selection rule(s) (e.g., to rank
observations by decreasing reduction in generalization
error). In some embodiments, the model state features (e.g.,
the mesh that the generator creates at any given point in
training) is reduced to a scalar (delta in generalization error),
allowing the LAL framework to be applied to generate the
generation of unstructured meshes (as opposed to classifi-
cation problems).

[0062] The LAL regressor can be a convolutional neural
network that reduces the mesh to a delta in generalization
error. In an embodiment, the LAL procedure is divided into
a main routine, given by Algorithm 1 (GEN-LAL INDE-
PENDENT) below, and a subroutine, given by Algorithm 2
(SIMULATED RANDOM-AL) below. This enables
enhanced selection of sample poses to reduce over-fitting

Apr. 15,2021

and improve the performance of the generator neural net-
work(s), particularly with respect to difficult or unusual
poses.

Algorithm 1 (GEN-LAL INDEPENDENT)

Data: {T,...,;Tx}(simulation configurations).

g (mesh Generator). f (test error delta Regressor). B sample batch size.
TR (current train set), P (observation pool), TT (test set).

Result: {Xy,....xz} sample batch of proposed actuatorconfigurations.
D—TRD < TT;

SPLIT < random partitioning funciton;

g=Bn—Bd—0

for © = {Tg,..,Ty} do

(@ M &) — SIMULATED RANDOM - AL (D, D, g, SPLIT, 1);
Append (¢, M, 8;) to (¢, n, d) respectively;

end

Train Regressor f on (¢, n) — 9;

Xp < arg max f(x);

Return X

s Cpx Es

Algorithm 2 (SIMULATED RANDOM-AL)

Data: M (number of samples).SPLIT (defines init set and simulated pool).
D (train set). D' (test set). g (mesh Generator model).
Result: (¢, n) (model state and actuator features)and
d (reduction in generalization error).
L., U, < SPLIT (D, ©);
Train Generator g, instance on L.
£, < £, (test set loss estimate);
Compute ¢ (model - state parameters)and append to ¢;
Append ng(actuators corresponding to L) to m;
Lo« Ly
fort < 1to M do
Select x, € U, at random;
L=< L U{xh
Append x, to ;
Train Generator g, on L
Compute ¢, (model - state parameters)and append to ¢);
Append (£, - £)to &;
£, < £, (test set loss estimate)
end
Return (¢,n,0)

[0063] Returning to the method 600, at block 615, the
Design Application 330 selects one of the determined poses
to be simulated. At block 620, the Design Application 330
then begins the first simulation stage to generate a simulated
mesh for the pose. The method 600 then continues to block
625, where the Design Application 330 determines whether
the begun simulation stage has already been completed
while generating a different simulated mesh, such that the
output of that stage can be reused with the current stage. If
s0, the method 600 proceeds to block 630, where the Design
Application 330 applies the results of the prior stage, to save
processing time. The method 600 then proceeds to block
640, discussed in more detail below.

[0064] Returning to block 625, if the Design Application
330 determines that the current simulation stage is new (e.g.,
no prior work can be re-used), the method 600 proceeds to
block 635, where the Design Application 330 completes the
simulation stage as normal (e.g., simulating the deformation
of the skin using physics models). The method 600 then
continues to block 640, where the Design Application 330
determines whether simulation of the selected pose has
completed (e.g., whether all required simulation stages have
completed). If not, the method 600 returns to block 620 to
begin the next simulation stage. If the simulated mesh has

US 2021/0110001 A1

been fully generated, however, the method 600 continues to
block 645, where the Design Application 330 determines
whether there is at least one additional sample pose that
needs to be simulated. If so, the method 600 returns to block
615. Otherwise, the method 600 terminates at block 650,
where the Design Application 330 returns and/or stores the
generated simulated meshes for future use.

[0065] FIG. 7 is a flow diagram illustrating a method 700
for training deep learning models to predict animatronic
meshes, according to one embodiment disclosed herein. The
method 700 begins at block 705, where the Design Appli-
cation 330 selects one of the previously-simulated meshes to
train the learning model. The method 700 then continues to
block 710, where the Design Application 330 determines the
corresponding actuator configuration(s) that were used to
generate the simulated mesh. In one embodiment, each
simulated mesh is associated with data (e.g., metadata) that
stores the actuator parameters used to generate the mesh. At
block 715, the Design Application 330 normalizes this
configuration data.

[0066] In one embodiment, normalizing the data includes
converting each of the actuator configuration values to a
value between zero and one, based on the min-max range of
the actuator. That is, based on the minimum and maximum
rotation or translation values for the actuator, the Design
Application 330 can scale the value specified in the actuator
configuration to a value between zero and one. The method
700 then continues to block 720, where the Design Appli-
cation 330 refines the learned model(s) based on the selected
mesh and the retrieved and normalized actuator configura-
tion(s). As discussed above, in one embodiment, this
includes training three neural networks: one for each dimen-
sion in the mesh. In such an embodiment, the Design
Application 330 will apply the value of the “x” coordinate
of each respective vertex as the target output for a respective
neuron in a first model, the “y” coordinate of each respective
vertex as the target value of a respective neuron in a second
model, and the “z” coordinate of each respective vertex in
the mesh as the target output for a respective neuron in a
third model.

[0067] To train the models, the normalized actuator con-
figuration values are then provided to the models as input. In
an embodiment, one or more weight(s) of the models are
then modified or refined to minimize the vertex-to-vertex (or
surface-to-surface) loss between the predictions generated
by the model and the actual positions of the vertices, as
indicated by the simulated mesh. The method 700 then
proceeds to block 725, where the Design Application 330
determines whether there is at least one additional simulated
mesh that needs to be ingested. If so, the method 700 returns
to block 705. Otherwise, the method 700 terminates at block
730, where the Design Application 330 returns the trained
models for use.

[0068] FIG. 8 is a flow diagram illustrating a method 800
for generating predicted meshes for an animatronic design,
according to one embodiment disclosed herein. The method
800 begins at block 805, where a Design Application 330
receives a set of one or more desired configurations. In an
embodiment, these actuator positions are specified by a user,
in order to visualize the resulting deformations of an ani-
matronic. In one embodiment, the user specifies these values
by entering them manually (e.g., typing them in, dragging a
sliding element on a GUI, and the like). In some embodi-
ments, the user can specify two or more configurations, and

Apr. 15,2021

the Design Application 330 can generate a series of values
between them, in order to interpolate movement from a first
pose to a second. The method 800 then proceeds to block
810.

[0069] At block 810, the Design Application 330 selects
one of the provided configuration(s), and prepares to gen-
erate a predicted mesh. At block 815, the Design Application
330 normalizes the selected configuration, as discussed
above. The method 800 then continues to block 820, where
the Design Application 330 generates, for each vertex in the
output mesh, a position along a first axis (e.g., the “x” axis).
In one embodiment, the Design Application 330 does so by
providing the actuator configuration to a first trained model
that outputs the “x” value for each vertex, as discussed
above. At block 825 and 830, the Design Application 330
similarly generates a value for each vertex’s position along
a second axis (e.g., the “y” axis) and each vertex’s position
along a third axis (e.g., the “z” axis), respectively. Using
these coordinates, the Design Application 330 can then place
each vertex in there-dimensional space, such that the pre-
dicted mesh can be output or rendered.

[0070] The method 800 then proceeds to block 835, where
the Design Application 330 determines whether there is at
least one additional configuration to be processed. If so, the
method 800 returns to block 810. Otherwise, the method 800
proceeds to block 840, where the Design Application 330
provides the generated predictive mesh(es). In one embodi-
ment, the Design Application 330 does so by rendering an
image of each respective predicted mesh, and displaying the
image(s) on a GUI. Generally, at block 840, the Design
Application 330 displays the mesh(es) to a user. In some
embodiments, the predicted meshes are generated and dis-
played in real-time as the user specifies actuator configura-
tions. This enables improved creation of animatronic
designs.

[0071] FIG. 9 is a flow diagram illustrating a method of
900 using machine learning to aid animatronic design,
according to one embodiment disclosed herein. The method
900 begins at block 905, where a Design Application 330
generates a first plurality of simulated meshes using a
physics simulation model, wherein the first plurality of
simulated meshes correspond to a first plurality of actuator
configurations for an animatronic mechanical design. At
block 910, the Design Application 330 trains a neural
network based on the first plurality of simulated meshes and
the first plurality of actuator configurations. The method 900
then proceeds to block 915 where the Design Application
330 generates, using the neural network, a plurality of
predicted meshes for the animatronic mechanical design,
based on a second plurality of actuator configurations.
Finally, at block 920, the Design Application 330 facilitates
evaluation of the animatronic mechanical design based on
the plurality of predicted meshes.

[0072] In the current disclosure, reference is made to
various embodiments. However, it should be understood that
the present disclosure is not limited to specific described
embodiments. Instead, any combination of the following
features and elements, whether related to different embodi-
ments or not, is contemplated to implement and practice the
teachings provided herein. Additionally, when elements of
the embodiments are described in the form of “at least one
of A and B,” it will be understood that embodiments
including element A exclusively, including element B exclu-
sively, and including element A and B are each contem-

US 2021/0110001 A1

plated. Furthermore, although some embodiments may
achieve advantages over other possible solutions or over the
prior art, whether or not a particular advantage is achieved
by a given embodiment is not limiting of the present
disclosure. Thus, the aspects, features, embodiments and
advantages disclosed herein are merely illustrative and are
not considered elements or limitations of the appended
claims except where explicitly recited in a claim(s). Like-
wise, reference to “the invention” shall not be construed as
a generalization of any inventive subject matter disclosed
herein and shall not be considered to be an element or
limitation of the appended claims except where explicitly
recited in a claim(s).

[0073] As will be appreciated by one skilled in the art,
embodiments described herein may be embodied as a sys-
tem, method or computer program product. Accordingly,
embodiments may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, embodiments described herein may
take the form of a computer program product embodied in
one or more computer readable medium(s) having computer
readable program code embodied thereon.

[0074] Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any suitable combination of the foregoing.
[0075] Computer program code for carrying out opera-
tions for embodiments of the present disclosure may be
written in any combination of one or more programming
languages, including an object oriented programming lan-
guage such as Java, Smalltalk, C++ or the like and conven-
tional procedural programming languages, such as the “C”
programming language or similar programming languages.
The program code may execute entirely on the user’s
computer, partly on the user’s computer, as a stand-alone
software package, partly on the user’s computer and partly
on a remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider).

[0076] Aspects of the present disclosure are described
herein with reference to flowchart illustrations or block
diagrams of methods, apparatuses (systems), and computer
program products according to embodiments of the present
disclosure. It will be understood that each block of the
flowchart illustrations or block diagrams, and combinations
of blocks in the flowchart illustrations or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the block(s) of the
flowchart illustrations or block diagrams.

[0077] These computer program instructions may also be
stored in a computer readable medium that can direct a

Apr. 15,2021

computer, other programmable data processing apparatus, or
other device to function in a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the block(s) of the
flowchart illustrations or block diagrams.
[0078] The computer program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process such that the instructions which execute on
the computer, other programmable data processing appara-
tus, or other device provide processes for implementing the
functions/acts specified in the block(s) of the flowchart
illustrations or block diagrams.
[0079] The flowchart illustrations and block diagrams in
the Figures illustrate the architecture, functionality, and
operation of possible implementations of systems, methods,
and computer program products according to various
embodiments of the present disclosure. In this regard, each
block in the flowchart illustrations or block diagrams may
represent a module, segment, or portion of code, which
comprises one or more executable instructions for imple-
menting the specified logical function(s). It should also be
noted that, in some alternative implementations, the func-
tions noted in the block may occur out of the order noted in
the Figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order or
out of order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams or
flowchart illustrations, and combinations of blocks in the
block diagrams or flowchart illustrations, can be imple-
mented by special purpose hardware-based systems that
perform the specified functions or acts, or combinations of
special purpose hardware and computer instructions.
[0080] While the foregoing is directed to embodiments of
the present disclosure, other and further embodiments of the
disclosure may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.
What is claimed is:
1. A method comprising:
generating a first plurality of simulated meshes using a
physics simulation model, wherein the first plurality of
simulated meshes corresponds to a first plurality of
actuator configurations for an animatronic mechanical
design;
training a machine learning model based on the first
plurality of simulated meshes and the first plurality of
actuator configurations;
generating, using the machine learning model, a plurality
of predicted meshes for the animatronic mechanical
design, based on a second plurality of actuator con-
figurations; and
facilitating virtual animation of the animatronic mechani-
cal design based on the plurality of predicted meshes.
2. The method of claim 1, wherein the animatronic
mechanical design comprises a flexible artificial skin and a
plurality of actuators to actuate the flexible artificial skin,
wherein the machine learning model is a neural network, and
wherein each input neuron in the neural network corre-
sponds to at least one of:

US 2021/0110001 A1

(1) an actuator of the plurality of actuators;

(ii) a combination of two or more actuators of the plurality
of actuators; and

(iii) an actuation point corresponding to one or more

actuators of the plurality of actuators.

3. The method of claim 2, wherein the neural network
generates predicted vertex positions in three dimensions for
the plurality of predicted meshes, wherein each dimension in
the predicted vertex position is generated independently.

4. The method of claim 2, wherein prior to training the
neural network, the first plurality of actuator configurations
are normalized such that each respective actuator configu-
ration of the first plurality of actuator configurations com-
prises a respective set of values ranging from zero to one,
and wherein the respective set of values indicate a position
and orientation of a respective actuator of the plurality of
actuators.

5. The method of claim 1, wherein training the machine
learning model comprises providing the first plurality of
actuator configurations as input and providing the first
plurality of simulated meshes as target output to optimize
surface-to-surface loss between the first plurality of simu-
lated meshes and the plurality of predicted meshes.

6. The method of claim 1, wherein the machine learning
model is a neural network comprising a generator network
configured to generate the plurality of predicted meshes and
a discriminator network configured to identify differences
between the plurality of predicted meshes and the first
plurality of simulated meshes.

7. The method of claim 1, wherein training the machine
learning model comprises using active/adaptive learning to
train a first neural network by:

selecting one or more clusters of pose configurations

using a convolutional neural network discriminator;
determining a second plurality of actuator configurations
for the one or more clusters of pose configurations;
generating a second plurality of simulated meshes using
the physics simulation model, based on the second
plurality of actuator configurations; and

refining the first neural network using the second plurality

of simulated meshes.

8. The method of claim 1, the method further comprising:

determining that the animatronic mechanical design is

acceptable, based on determining that the plurality of
predicted meshes meet user expectations;

facilitating construction of the animatronic mechanical

design; and

animating the constructed animatronic mechanical

design, based on the virtual animation.

9. A non-transitory computer-readable medium containing
computer program code that, when executed by operation of
one or more computer processors, performs an operation
comprising:

generating a first plurality of simulated meshes using a

physics simulation model, wherein the first plurality of
simulated meshes corresponds to a first plurality of
actuator configurations for an animatronic mechanical
design;

training a machine learning model based on the first

plurality of simulated meshes and the first plurality of
actuator configurations;

10

Apr. 15,2021

generating, using the machine learning model, a plurality
of predicted meshes for the animatronic mechanical
design, based on a second plurality of actuator con-
figurations; and

facilitating virtual animation of the animatronic mechani-

cal design based on the plurality of predicted meshes.

10. The non-transitory computer-readable medium of
claim 9, wherein the animatronic mechanical design com-
prises a flexible artificial skin and a plurality of actuators to
actuate the flexible artificial skin, wherein the machine
learning model is a neural network, and wherein each input
neuron in the neural network corresponds to at least one of:

(1) an actuator of the plurality of actuators;

(i1) a combination of two or more actuators of the plurality

of actuators; and

(iii) an actuation point corresponding to one or more

actuators of the plurality of actuators.

11. The non-transitory computer-readable medium of
claim 10, wherein the neural network generates predicted
vertex positions in three dimensions for the plurality of
predicted meshes, wherein each dimension in the predicted
vertex position is generated independently.

12. The non-transitory computer-readable medium of
claim 10, wherein prior to training the neural network, the
first plurality of actuator configurations are normalized such
that each respective actuator configuration of the first plu-
rality of actuator configurations comprises a respective set of
values ranging from zero to one, and wherein the respective
set of values indicate a position and orientation of a respec-
tive actuator of the plurality of actuators.

13. The non-transitory computer-readable medium of
claim 9, wherein training the machine learning model com-
prises providing the first plurality of actuator configurations
as input and providing the first plurality of simulated meshes
as target output to optimize surface-to-surface loss between
the first plurality of simulated meshes and the plurality of
predicted meshes.

14. The non-transitory computer-readable medium of
claim 9, wherein training the machine learning model com-
prises using active/adaptive learning to train a first neural
network by:

selecting one or more clusters of pose configurations

using a convolutional neural network discriminator;
determining a second plurality of actuator configurations
for the one or more clusters of pose configurations;
generating a second plurality of simulated meshes using
the physics simulation model, based on the second
plurality of actuator configurations; and

refining the first neural network using the second plurality

of simulated meshes.

15. A system comprising:

one or more computer processors; and

a memory containing a program which when executed by

the one or more computer processors performs an

operation, the operation comprising:

generating a first plurality of simulated meshes using a
physics simulation model, wherein the first plurality
of simulated meshes corresponds to a first plurality
of actuator configurations for an animatronic
mechanical design;

training a machine learning model based on the first
plurality of simulated meshes and the first plurality
of actuator configurations;

US 2021/0110001 A1

generating, using the machine learning model, a plu-
rality of predicted meshes for the animatronic
mechanical design, based on a second plurality of
actuator configurations; and

facilitating virtual animation of the animatronic
mechanical design based on the plurality of predicted
meshes.

16. The system of claim 15, wherein the animatronic
mechanical design comprises a flexible artificial skin and a
plurality of actuators to actuate the flexible artificial skin,
wherein the machine learning model is a neural network, and
wherein each input neuron in the neural network corre-
sponds to at least one of:

(1) an actuator of the plurality of actuators;

(ii) a combination of two or more actuators of the plurality

of actuators; and

(iii) an actuation point corresponding to one or more

actuators of the plurality of actuators.

17. The system of claim 16, wherein the neural network
generates predicted vertex positions in three dimensions for
the plurality of predicted meshes, wherein each dimension in
the predicted vertex position is generated independently.

18. The system of claim 16, wherein prior to training the
neural network, the first plurality of actuator configurations
are normalized such that each respective actuator configu-

Apr. 15,2021

ration of the first plurality of actuator configurations com-
prises a respective set of values ranging from zero to one,
and wherein the respective set of values indicate a position
and orientation of a respective actuator of the plurality of
actuators.

19. The system of claim 15, wherein training the machine
learning model comprises providing the first plurality of
actuator configurations as input and providing the first
plurality of simulated meshes as target output to optimize
surface-to-surface loss between the first plurality of simu-
lated meshes and the plurality of predicted meshes.

20. The system of claim 15, wherein training the machine
learning model comprises using active/adaptive learning to
train a first neural network by:

selecting one or more clusters of pose configurations

using a convolutional neural network discriminator;
determining a second plurality of actuator configurations
for the one or more clusters of pose configurations;
generating a second plurality of simulated meshes using
the physics simulation model, based on the second
plurality of actuator configurations; and

refining the first neural network using the second plurality

of simulated meshes.

#* #* #* #* #*

